
Package: statisfactory (via r-universe)
September 1, 2024

Type Package

Title Statistical and Geometrical Tools

Version 1.0.5

Date 2024-01-02

Maintainer Adam B. Smith <adam.smith@mobot.org>

Description A collection of statistical and geometrical tools
including the aligned rank transform (ART; Higgins et al. 1990
<doi:10.4148/2475-7772.1443>; Peterson 2002
<doi:10.22237/jmasm/1020255240>; Wobbrock et al. 2011
<doi:10.1145/1978942.1978963>), 2-D histograms and histograms
with overlapping bins, a function for making all possible
formulae within a set of constraints, amongst others.

Imports omnibus

License GPL (>=3)

LazyData true

LazyLoad yes

URL https://github.com/adamlilith/statisfactory

Encoding UTF-8

RoxygenNote 7.2.3

Repository https://adamlilith.r-universe.dev

RemoteUrl https://github.com/adamlilith/statisfactory

RemoteRef HEAD

RemoteSha 28a306ac7f79e10cf76bcbee0dd0de50f4563cb3

Contents
art . 2
backTransPCA . 4
countConnected . 4
euclid . 6

1

https://doi.org/10.4148/2475-7772.1443
https://doi.org/10.22237/jmasm/1020255240
https://doi.org/10.1145/1978942.1978963
https://github.com/adamlilith/statisfactory

2 art

fuzzyJaccard . 6
geoMean . 7
hist2d . 8
histOverlap . 9
invLogitAdj . 10
logitAdj . 11
makeFormulae . 12
mmode . 14
nagelR2 . 14
psum . 15
rankMulti . 16
rmsd . 17
sampleAcross . 18
sampleStrat . 19
se . 21

Index 23

art Aligned rank transform of non-parametric data for further analysis
using ANOVA

Description

This function performs the aligned rank transforms on non-parametric data which is useful for
further analysis using parametric techniques like ANOVA.

Usage

art(
x,
response = names(x)[1],
factors = names(x)[2:ncol(x)],
subject = NULL,
fun = function(x) mean(x, na.rm = TRUE),
verbose = FALSE

)

Arguments

x Data frame.

response Character. Names of column of x that has response variable (default is to use
the first column).

factors Character list. Names of columns of x used to define factors and levels (default
is to use all columns except for the first).

art 3

subject NULL or character. Name of column in x that has the subject variable. If NULL
then this is ignored. If specified, residuals are calculated for each cell defined by
factors, not by subject and factors, but aligning is done using both factors and
subject.

fun Function. Function used to calculate cell centering statistic (the default is to use:
mean with na.rm=TRUE). The function can be any that handles a list of one or
more elements.

verbose Logical. If TRUE then display progress.

Details

The function successfully re-creates rankings given by ARTool (Wobbrock et al. 2011) of data in
Higgins et al. (1990) for data with 2 and 3 factors. If response is ranks and the set of ranks in
each cell is the same (e.g., each cell has ranks 1, 2, and 3, but not necessarily in that order), then all
values will be equal across the different ART variables. This occurs because the center of each cell
(e.g., the mean) is the same as the grand mean, so the aligned values are simply the residuals. An
ANOVA on this data yields no variance across cells, so the F tests are invalid.

Value

Data frame.

References

Higgins, J.J., Blair, R.C., and Tashtoush, S. 1990. The aligned rank transform procedure. Pro-
ceedings of the Conference on Applied Statistics in Agriculture. Manhattan, Kansas: Kansas State
University, pp. 185-195. doi:10.4148/24757772.1443

Peterson, K. 2002. Six modifications of the aligned rank transform test for interaction. Journal of
Modern Applied Statistical Methods 1:100-109. doi:10.22237/jmasm/1020255240

Wobbrock, J.O., Findlater, L., Gergle, D., and Higgins, J.J. 2011. The aligned rank transform for
nonparametric factorial analysis using only ANOVA procedures. Proceedings of the ACM Confer-
ence on Human Factors in Computing Systems (CHI 2011). Vancouver, British Columbia (May
7-12, 2011). New York: ACM Press, pp. 143-146. doi:10.1145/1978942.1978963.

Examples

x <- data.frame(
subject=c('a', 'b', 'c', 'a', 'b', 'c', 'a', 'b', 'c', 'a', 'b', 'c'),
factor1=c('up', 'up', 'up', 'up', 'up', 'up', 'down', 'down', 'down', 'down',

'down', 'down'),
factor2=c('high', 'med', 'low', 'high', 'med', 'low', 'high', 'med', 'low', 'high',

'med', 'low'),
response=c(1, 17, 1, 1, 0, 4, 5, 6, 3, 7, 100, 70)

)
art(x=x, response='response', factors=c('factor1', 'factor2'))

https://doi.org/10.4148/2475-7772.1443
https://doi.org/10.22237/jmasm/1020255240
https://doi.org/10.1145/1978942.1978963

4 countConnected

backTransPCA "Back-transform" PCA scores to their original values

Description

This function back-transforms principal component scores to their original values.

Usage

backTransPCA(pca, x = NULL)

Arguments

pca Object of class prcomp.

x Either NULL (default) or a vector of PC scores. If NULL, then the scores from the
PCA object are used.

Value

Numeric vector.

Examples

x <- data.frame(
x1 = 1:20 + rnorm(20),
x2 = 1:20 + rnorm(20, 0, 5),
x3 = sample(20, 20)

)

pca1 <- prcomp(x, center=FALSE, scale=FALSE)
pca2 <- prcomp(x, center=TRUE, scale=FALSE)
pca3 <- prcomp(x, center=TRUE, scale=TRUE)

backTransPCA(pca1)
backTransPCA(pca2)
backTransPCA(pca3)

countConnected Count number of contiguous "blocks" of cells

Description

This function calculates the number of objects formed by one or more adjacent cells that touch on
their edges (i.e., not just at a corner). One way to solve this (inefficiently) is using a "ink-spreading"
algorithm that accumulates adjacent cells until all are accounted for, then counts this as a single
component. This function uses an efficient solution based on the Euler characteristic.

countConnected 5

Usage

countConnected(x, count = 1)

Arguments

x Matrix

count Value to count as a "presence" in the matrix. All other values will be assumed
to be not part of a component.

Details

Inspired by an answer by Alon Amit to the question on Quora, "What are some programming
problems that look hard at a first glance but are actually easy?".

Value

An integer (the number of connected, non-conterminous components).

Examples

v <- c(
1, 1, 0, 1,
1, 1, 0, 0,
1, 0, 0, 0,
0, 0, 0, 1,
0, 0, 1, 1,
1, 0, 0, 0,
0, 0, 0, 0)

x <- matrix(v, ncol=4, byrow=TRUE)
x

countConnected(x)

Not run:
will break because of connection at a vertex
v <- c(
1, 1, 0, 1,
1, 1, 0, 0,
1, 0, 0, 0,
0, 0, 0, 1,
0, 0, 1, 1,
1, 0, 0, 0,
0, 1, 0, 0)

x <- matrix(v, ncol=4, byrow=TRUE)
x

countConnected(x)

End(Not run)

6 fuzzyJaccard

euclid Euclidean distance

Description

Euclidian distance in one or more dimensions.

Usage

euclid(a, b, na.rm = FALSE)

Arguments

a Numeric vector.

b Numeric vector of same length as a.

na.rm Logical. If TRUE, calculation ignores NA’s in a and/or b.

Value

Numeric.

Examples

euclid(0, 5)
euclid(c(0, 0), c(1, 1))
euclid(c(0, 0, 0), c(1, 1, 1))

fuzzyJaccard Fuzzy Jaccard index

Description

Calculates the fuzzy Jaccard index. The "normal" Jaccard index is given by sum(A intersect B)
/ sum(A union B), where A and B are sets. Typically, A and B are binary outcomes, but the fuzzy
version can accommodate values in [0, 1] and/or binary outcomes. The computationally efficient
and equivalent method is sum(pmin(A, B)) / (sum(A) + sum(B) - sum(pmin(A, B))). If A and B
and both binary, the outcome is the same as the "plain" Jaccard index.

Usage

fuzzyJaccard(a, b)

geoMean 7

Arguments

a, b Vectors of binary and/or values in the range [0, 1]. The vectors must be of the
same length.

Value

Numeric in the range [0, 1].

Examples

a <- c(0.3, 0, 0.9, 0.5)
b <- c(1, 1, 0, 0)
fuzzyJaccard(a, b)

geoMean Geometric mean

Description

Geometric mean, with optional removal of NA’s and propagation of zeros.

Usage

geoMean(x, prop0 = FALSE, na.rm = TRUE)

Arguments

x Numeric list.

prop0 Logical, if FALSE (default) then if any value in x equals 0 then the output will
be zero. If TRUE, then zero values will be removed before calculation of the
geometric mean.

na.rm Logical, if TRUE then remove NA values first.

Details

Adapted from Paul McMurdie on StackOverflow.

Value

Numeric.

https://stackoverflow.com/questions/2602583/geometric-mean-is-there-a-built-in

8 hist2d

Examples

x <- seq(0.01, 1, by=0.01)
mean(x)
geoMean(x)
x <- seq(0, 1, by=0.01)
mean(x)
geoMean(x)
geoMean(x, prop0=TRUE)

hist2d Two-dimensional histogram

Description

Two-dimensional histogram

Usage

hist2d(x, breaks1 = "Sturges", breaks2 = "Sturges", right = TRUE, ...)

Arguments

x Data frame or matrix with at least two columns. Only first two columns are used
to tally frequencies.

breaks1 One of the following describing how breaks for the first variable are calculated:

• Numeric vector: Breakpoints for bins for the first variable.
• Single integer: The number of bins into which to tally values of the first

variable.
• Function: To compute the vector of breakpoints.
• Function: To compute the number of cells. Used as a suggestion only (see
hist).

• Character: The name of a function to compute the number of cells (see the
Details section in hist). Used as a suggestion only (see hist).

breaks2 Same as breaks1 but for the second variable.

right Logical, if TRUE (default) then use left-open and right-closed intervals.

... Arguments to pass to hist.

Value

Object of class matrix and histogram2d. Columns pertain to bins of x1 and rows x2. Column
names and row names are mid-points of bins.

See Also

hist

histOverlap 9

Examples

x1 <- rnorm(1000)
x2 <- 0.5 * x1 * rnorm(1000)
x <- data.frame(x1=x1, x2=x2)
hist2d(x)

histOverlap Count number of values in overlapping bins

Description

Histogram of number of values in overlapping bins.

Usage

histOverlap(x, breaks, right = TRUE, graph = TRUE, indices = FALSE)

Arguments

x Numeric values.

breaks One integer, three numeric values, or a matrix or data frame with at least two
columns:

• Single integer: The number of overlapping bins into which to enumerate
values of x. The range of x covered by the bins bins will extend from
the least value minus 2.5 percent of the range to the largest value plus 2.5
percent of the range.

• Three numeric values: The first two values are the range of covered by the
bins (least and greatest). The third value is the number of bins.

• Matrix or data frame with at least two columns. Each row corresponds to
a different bin. The first column represents the minimum values of each
bin and the second column the maximum value. Subsequent columns are
ignored. Note that by using this option arbitrary bins can be used–they need
not overlap or even be continuous in coverage.

right Logical, if TRUE (default), then use left-open and right-closed intervals.

graph Logical, if TRUE (default), then plot frequencies.

indices Logical, if TRUE, then the output will have an attribute which is a list item with
one element per bin in the output, with the indices of x that fall in each bin.
Default is FALSE.

Value

Matrix

10 invLogitAdj

See Also

hist

Examples

set.seed(123)
x <- rnorm(1000)
histOverlap(x, breaks=10, graph=TRUE)
histOverlap(x, breaks=c(0, 1, 10), graph=TRUE)
mat <- matrix(c(seq(0, 1, by=0.1), seq(0.3, 1.3, by=0.1)), ncol=2)
histOverlap(x, breaks=mat, graph=TRUE)
histOverlap(x, breaks=mat, indices=TRUE)

invLogitAdj Inverse logit is robust to cases that equal 0 or 1

Description

This function is the inverse of logitAdj. That function calculates the logit of values but is robust
to cases where the operand is 0 or 1. The adjusted inverse logit is equal to (base^x + epsilon *
base^x - epsilon) / (base^x + 1).

Usage

invLogitAdj(x, epsilon = 0.01, base = 10, auto = FALSE)

Arguments

x Numeric vector.

epsilon Value or character. If a numeric value (typically ~0.01 or smaller), then this is
added/subtracted from x to ensure log of 0 or 1 is not taken. If equal to 'auto'
then the value of epsilon is taken from the attributes of x. If x has no such
attribute, a warning is given and a value of 0.01 is used.

base Base of logarithm. Use base=exp(1) for base e.

auto If TRUE then if the attributes of x have slots named epsilon and base then use
these instead of the user-supplied values of epsilon and base. If they do not
appear as attributes of x but auto is TRUE then the function prints warnings and
uses 0.01 and 10, respectively. If FALSE (default) then use the user-supplied
values of epsilon and base.

Value

Numeric.

See Also

logitAdj

logitAdj 11

Examples

x <- seq(0, 1, by=0.1)
y <- logitAdj(x)
xx <- invLogitAdj(y, auto = TRUE)

logitAdj A logit() function robust to values that equal 0 or 1

Description

This function returns the logit value (log(x / (1 - x))) where a small value can be added to x to
avoid problems of calculating the log when x equals 0 or 1.

Usage

logitAdj(x, epsilon = 0.01, base = 10)

Arguments

x Numeric vector.

epsilon Value to add/subtract from x to ensure log of 0 or 1 is not taken (usually a small
number). If NULL, then the smallest value of any x > 0 and 1 - x for all x < 1 is
used.

base Base of logarithm.

Value

Numeric equal to log((x + epsilon)/(1 - x + epsilon), base=base).

See Also

invLogitAdj

Examples

set.seed(123)
x <- seq(0, 1, by=0.01)
logitAdj(x)
logitAdj(x, 0.001)
invLogitAdj(x, 0.001)
invLogitAdj(x, 0.001)
invLogitAdj(x, auto = TRUE)

12 makeFormulae

makeFormulae Make all possible formula

Usage

makeFormulae(
formula,
intercept = TRUE,
interceptOnly = TRUE,
linearOnly = TRUE,
quad = TRUE,
ia = TRUE,
verboten = NULL,
verbotenCombos = NULL,
minTerms = NULL,
maxTerms = NULL,
returnFx = stats::as.formula,
verbose = FALSE

)

Arguments

formula A formula object with just linear terms.

intercept Logical: If TRUE (default) then all models include an intercept. If FALSE then
then formula will specify that regression occurs through the origin (e.g., y ~ -1
+ etc.)

interceptOnly Logical: If TRUE then an intercept-only model is included in final set.

linearOnly Logical: If TRUE (default) then models with only linear terms are included in
final set (plus other kinds of models if desired).

quad Logical: If TRUE (default), then include quadratic terms.

ia Logical: If TRUE (default), then include 2-way interaction terms.

verboten Character vector of terms that should not appear in the models. Ignored if NULL
(default). You can use this argument, for example, to exclude specific interac-
tions (e.g., 'x1:x2', but also include the converse, 'x2:x1'), or power terms
(e.g., 'I(x1^2)'). Note that to ensure proper matching, you need to use a dou-
ble backslash in front of each parenthesis and caret ((^)) character.}
\item{verbotenCombos}{List of lists: Used to specify specific combinations of
terms that should not occur together. See Details below. Ignored if NULL (de-
fault).}
\item{minTerms}{Either a positive integer representing the minimum number
of terms required to be in a model, or NULL (default) in which case the smallest
model can have just one term.}
\item{maxTerms}{Either a positive integer representing the maximum number
of terms allowed to be in a model, or NULL (default) in which case there is no
practical limit on the number of terms in a model.}

makeFormulae 13

\item{returnFx}{Function used to generate the class of the output objects. Sen-
sible functions in include as.formula (default) or as.character.}
\item{verbose}{Logical: If TRUE then display progress. Default is FALSE.} } { A
vector of formulae. } { This functions creates a list of formulae that contain all
possible linear, quadratic, and two-way interaction terms from individual terms
in an object of class formula. The formulae respect marginality conditions (i.e.,
they will always include lower-order terms if higher-order terms are included
in a formula). Note that if there are more than several terms (i.e., >=3) and
interactions and/or quadratic terms are desired, then formula generation may
take a long time. } { The argument verbotenCombos can be used to specify
variables or terms that should not occur in the same formula. The argument
verbotenCombos is composed of a list of lists. Each sublist comprises names
of two variables or terms stated as characters followed by two logical values
(TRUE/FALSE). The second variable/term is removed from the model if the first
is in the model. If the first logical value is TRUE then the second variable/term is
removed if the first variable appears alone in the formula (e.g., not in an inter-
action with another variable). If the first logical value is FALSE then the second
variable/term is removed if the first variable/term appears in any term (e.g., as
an interaction with another term). Examples:

• verbotenCombos=list(list('x1', 'x2', TRUE, TRUE)): Removes x2 if
x1 occurs in the model as a linear term.

• verbotenCombos=list(list('x1', 'x2', FALSE, TRUE)): Removes the
linear term x2 if x1 occurrs in any term in the model.

• verbotenCombos=list(list('x1', 'x2', TRUE, FALSE)): Removes any
term with x2 if the linear term x1 occurrs in the model.

• verbotenCombos=list(list('x1', 'x2', FALSE, FALSE)): Removes any
term with x2 if any term has x1.

Quadratic terms and interaction terms can also be used, so:
• verbotenCombos=list(list('x1', 'x1:x2', TRUE, TRUE)): Removes x1:x2

if x1 were in the model.
• verbotenCombos=list(list('x1', 'I(x2^2)', TRUE, TRUE)): Removes
I(x2^2) if x1 occurs in the model.

Note that inexact matching can remove terms incorrectly if inexact matches ex-
ist between names of terms or variables. For example, if using an inexact match,
then verbotenCombos(list('x1', 'x2', FALSE, FALSE)) will find any term
that has an x1 (e.g., x11) and if it exists, remove any term with an x2 (e.g., x25).
Note that reciprocally removing predictors makes little sense since, for example
list(list('x1', 'x2', FALSE, FALSE), list('x2', 'x1', FALSE, FALSE))
removes all formulae with x2 if x1 appears then tries to find any models with x2
that have x1 (of which there will be none after the first set is removed). } {
makeFormulae(y ~ x1 + x2 + x3, maxTerms=3) makeFormulae(y ~ x1 + x2 + x3,
ia=FALSE, maxTerms=3) verboten <- c(’x1:x2’, ’I(x1^2)’) makeFormulae(y ~
x1 + x2 + x3, verboten=verboten, maxTerms=3)
makeFormulae(y ~ x1 + x2 + x3, maxTerms=3) verbotenCombos <- list(list(’x1’,
’x2’, TRUE, TRUE)) makeFormulae(y ~ x1 + x2 + x3, verbotenCombos=verbotenCombos,
maxTerms=3)
}

14 nagelR2

mmode Calculate the mode of numeric, character, or factor data

Description

Calculate the mode of numeric, character, or factor data

Usage

mmode(x, na.rm = FALSE)

Arguments

x Numeric, character, or factor vector.

na.rm Logical. If TRUE then remove NAs first. Otherwise fail.

Value

Numeric, character, or factor value.

Examples

mmode(round(10 * rnorm(1000, 2)))
mmode(c('a', 'b', 'b', 'b', 'c', 'd', 'd'))

nagelR2 Nagelkerge’s / Craig & Uhler’s R2

Description

Nagelkerge’s / Craig & Uhler’s R2

Usage

nagelR2(likeNull, likeFull, n)

Arguments

likeNull Likelihood (not log-likelihood) of the null model or an object of class logLik
with log-likelihood of the null model (usually an intercept-only model).

likeFull Likelihood (not log-likelihood) of the "full" model or an object of class logLik
with log-likelihood of the "full" model (usually a model with covariates).

n Sample size.

psum 15

Value

Numeric.

Examples

create data
x <- 1:100
y <- 2 + 1.7 * x + rnorm(100, 0, 30)

models
nullModel <- lm(y ~ 1)
fullModel <- lm(y ~ x)

plot
plot(x, y)
abline(nullModel, col='red')
abline(fullModel, col='blue')
legend('bottomright', legend=c('Null', 'Full'), lwd=1, col=c('red', 'blue'))

R2
likeNull <- exp(as.numeric(logLik(nullModel)))
likeFull <- exp(as.numeric(logLik(fullModel)))
nagelR2(likeNull, likeFull, 100)

psum Element-by-element sum

Description

This function is similar to pmax or pmin, except that it returns the element-wise sum of values. If
the input is a matrix or data.frame, the output is the same as colSums.

Usage

psum(..., na.rm = FALSE)

Arguments

... A set of vectors of the same length, a matrix, or a data.table.

na.rm If FALSE (default), return NA if any element in a set is NA.

Details

Adapted from answer by Ben Bolker on StackOverflow.

Value

A numeric vector.

https://stackoverflow.com/questions/13123638/there-is-pmin-and-pmax-each-taking-na-rm-why-no-psum

16 rankMulti

Examples

x1 <- 1:10
x2 <- runif(10)
psum(x1, x2)

x <- cbind(x1, x2)
psum(x)

x2[3] <- NA
psum(x1, x2)
psum(x1, x2, na.rm=TRUE)

rankMulti A multivariate adaptation of the rank() function

Description

This function ranks values in a data frame or matrix by more than one field, with ties in one field
broken by subsequent fields.

Usage

rankMulti(x, cols = 1:ncol(x), ...)

Arguments

x Data frame or matrix.

cols Names or indices of columns by which to rank, with first one gaining preference
over the second, second over the third, etc.

... Arguments to pass to rank. Note that if the ties.method argument is used the
options 'first' or 'random' will rank by the first column uniquely such that
there are no ties for subsequent columns to break.

Value

Numeric vector of ranks.

Examples

x <- data.frame(x1=c('a', 'b', 'b', 'c', 'a', 'a'), x2=c(11, 2, 1, NA, 10, 11))
rankMulti(x)
rankMulti(x, c('x2', 'x1'))

rmsd 17

rmsd Root-mean-square deviation (error)

Description

Calculate the root-mean-square deviation (sqrt(mean((x1 - x2)^2))). If non-constant weights w
are supplied, then the calculation is sqrt(sum(w * (x1 - x2)^2) / sum(w)). Alternatively, w can
be a function, in which case the returned value is equal to sqrt(mean(w((x1 - x2)^2))).

Usage

rmsd(x1, x2, w = NULL, na.rm = FALSE)

Arguments

x1 Numeric vector, matrix, or data frame.

x2 Numeric vector the same length as x1, or a matrix or data frame the same di-
mensions as x1.

w Weights or a function defining weights. If x1 and x2 are vectors, this can be a
numeric vector the same length as x1 or x2. If x1 and x2 are matrices or data
frames then this can be either a matrix or data frame with the same dimensions as
x1 and x2. Alternatively, this can be a function to define weights. The function
will be applied to each value of (x1 - x2)^2. The default value of NULL assigns
each pair of values in x1 and x2 equal weight.

na.rm Logical, if TRUE then remove any elements in x1 and x2 where either x1 or x2
is NA. Default is FALSE, in which case any NA returns NA.

Value

Numeric.

Examples

set.seed(123)
numeric vectors
x1 <- 1:20
x2 <- 1:20 + rnorm(20)
rmsd(x1, x2)
x1[1] <- NA
rmsd(x1, x2)
rmsd(x1, x2, na.rm=TRUE)

matrices
x1 <- matrix(1:20, ncol=5)
x2 <- matrix(1:20 + rnorm(20), ncol=5)
rmsd(x1, x2)
x1[1, 1] <- NA
rmsd(x1, x2)

18 sampleAcross

rmsd(x1, x2, na.rm=TRUE)

weights as values
x1 <- matrix(1:20, ncol=5)
x2 <- matrix(1:20 + rnorm(20, 0, 2), ncol=5)
w <- matrix(1:20, ncol=5)
rmsd(x1, x2)
rmsd(x1, x2, w)

weights as a function
x1 <- matrix(1:20, ncol=5)
x2 <- matrix(20:1, ncol=5)
w <- function(x) 1 - exp(-x)
rmsd(x1, x2)
rmsd(x1, x2, w)

sampleAcross Permute values across two vectors or columns in two data frames or
matrices

Description

This function permutes values across two or more vectors or columns between two or more data
frames or matrices. If vectors, then all values are swapped randomly and the output is a list object
with vectors of the same length. If data frames or matrices, then values in selected columns are
swapped across the data frames or matrices and the output is a list object with data frames or
matrices of the same dimension as the originals.

Usage

sampleAcross(..., by = NULL, replace = FALSE)

Arguments

... One or more vectors, data frames, or matrices (all objects must be the same
class).

by Character list or list of integers. Names of columns or column numbers to per-
mute (only used if ... is data frames or matrices). If left as NULL (default) the
all columns are permuted.

replace Logical. If TRUE then sample with replacement. If FALSE (default) then sample
without replacement.

Value

A list object with same number of elements as in ... with the original dimensions. The order is the
same as in ... (e.g., so if the call is like sampleAcross(a, b, c) then the output will be a list with
permuted versions of a, b, and c in that order).

sampleStrat 19

See Also

sample

Examples

x1 <- 1:5
x2 <- 6:10
x3 <- 50:60
sampleAcross(x1, x2, x3)
sampleAcross(x1, x2, x3, replace=TRUE)

a <- data.frame(x=1:10, y=letters[1:10])
b <- data.frame(x=11:20, y=letters[11:20])
sampleAcross(a, b, by='y')
sampleAcross(a, b)

sampleStrat Stratified randomization

Description

This function scrambles values of a given column of a data frame in a stratified manner with respect
to one or more other "covariate" columns. The covariate columns can be specified, as well as the
width of the range of each covariate around each focal value from which to sample candidates for
swapping.

Usage

sampleStrat(
x,
col,
w = function(x) stats::sd(x, na.rm = TRUE)/(max(x, na.rm = TRUE) - min(x, na.rm =

TRUE)),
d = 0.1,
by = "all",
permuteBy = TRUE

)

Arguments

x Data frame containing at least two columns, one with numeric values and at least
one more with numeric or factor values.

col Character or integer, name or number of column in x to swap values.

20 sampleStrat

w Function or numeric value >0, sets window size of non-factor covariates as a
proportion of their range. If using a function it must work on a list of val-
ues. It can be helpful if this function accepts the argument 'na.rm=T' to avoid
problems with NAs in the column specified by col. The default is the standard
deviation divided by the range. This reduces the correlation between erstwhile
perfectly correlated variables to ~0.80 (on average). Ignored for covariates that
are factors.

d Numeric > 0, if no swappable value is found within w * (max(col) - min(col)),
then w is expanded by 1 + d iteratively until a value is found. Ignored for covari-
ates that are factors.

by Character vector or integers. Name(s) or columns numbers of covariates by
which to stratify the target column. Can also specify 'all' (default) to stratify
by all columns with a numeric/integer/factor class except the target column.

permuteBy Logical, if TRUE then in each step scramble the order of values in by. If FALSE
then strata are considered for each covariate in teh order listed by by. This
argument has no effect if by has just one value.

Details

The script starts by randomly selecting a value v_i from the target column. It then finds the value
of covariate c_j, that is associated with v_i. Call the particular value of c_j associated with v_i
c_j:i. If c_j is a continuous variable it then finds all values c_{v} that fall within c_j:i - w,
c_j:i + w where w is a proportion of the range of c_j.
The function then randomly selects a value of v_k from those associated with this range of c_j and
swaps v_i with this value. Depending on the random number generator, v_i can = v_k and in fact
be the same value. If no values of c_j other than the one associated with v_i are found within this
range, then the window is expanded iteratively by a factor of w * (1 + d) until at least one more
values that have yet to be swapped have been found. The procedure then finds a window around
v_k as described above (or randomly selects a new v_i if v_i was v_k) and continues. If there is
an odd number of values then the last value is kept as is (not scrambled). If c_j is a categorical
variable (a factor), then the script finds all values of of v in same factor level as v_i. Swaps of v
occur within this level of c_j. However, if there are <2 of values in the level (including the value
associated with v_i), then the script looks to the next factor level. The "next" is taken to be the
factor level with the least difference between v_i and the average of values of v associated with
the potential "next" factor level. The "window" for a factor level is thus the level plus one or more
levels with the closest average values of v given that there is >1 value of v within this group that has
yet to be swapped.
If there is more than one covariate, then these steps are repeated iteratively for each covariate (i.e.,
selecting values of v given the stratum identified in covariate c_j, then among these values those
also in the stratum identified in covariate c_k, and so on). In this case the order in which the
covariates are listed in by can affect the outcome. The order can be permuted each values of v_i if
permuteBy is TRUE.

Value

A data frame with one column swapped in a stratified manner relative another column or set of
columns.

se 21

See Also

sample

Examples

Example #1: Scramble column 1 with respect to columns 2 and 3.
Note in the output high values of "a" tend to be associated with
high values of "b" and low values of "c". This tendency decreases as "w" increases.

x <- data.frame(a=1:20, b=1:20, c=20:1, d=c(rep('a', 10), rep('b', 10)))
x$d <- as.factor(x$d)
x

scramble by all other columns
sampleStrat(x=x, col=1, w=0.2, by='all', d=0.1)

scramble by column "d"
sampleStrat(x=x, col=1, w=0.2, by='d', d=0.1)

Example #2: The target variable and covariate are equal
(perfectly collinear). How wide must the window (set by
argument "w'" be to reduce the average correlation
between them to an arbitrary low level?

df <- data.frame(a=1:100, b=1:100)
cor(df) # perfect correlation

corFrame <- data.frame()
for (w in seq(0.1, 1, 0.1)) {

for (countRep in 1:10) {
df2 <- sampleStrat(x=df, col=1, w=w)
corFrame <- rbind(corFrame, data.frame(w=w, cor=cor(df2)[1, 2]))

}
}

boxplot(cor ~ w, data=corFrame, xlab='w', ylab='correlation coefficient')

se Standard error

Description

Calculate the standard error of the mean.

Usage

se(x, na.rm = FALSE)

22 se

Arguments

x Numeric vector.

na.rm Logical. If TRUE then remove NAs before calculation.

Value

Numeric.

See Also

link[stats]{sd}

Examples

se(1:100)

Index

art, 2
as.character, 13
as.formula, 13

backTransPCA, 4

colSums, 15
countConnected, 4

euclid, 6

fuzzyJaccard, 6

geoMean, 7

hist, 8, 10
hist2d, 8
histOverlap, 9

invLogitAdj, 10, 11

logitAdj, 10, 11

makeFormulae, 12
mmode, 14

nagelR2, 14

pmax, 15
pmin, 15
psum, 15

rank, 16
rankMulti, 16
rmsd, 17

sample, 19, 21
sampleAcross, 18
sampleStrat, 19
se, 21

23

	art
	backTransPCA
	countConnected
	euclid
	fuzzyJaccard
	geoMean
	hist2d
	histOverlap
	invLogitAdj
	logitAdj
	makeFormulae
	mmode
	nagelR2
	psum
	rankMulti
	rmsd
	sampleAcross
	sampleStrat
	se
	Index

